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ABSTRACT

We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier

transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this

approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey.

The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast

Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling

window function yields estimates of the true transform. Simple power spectrum estimates from these

transforms are roughly consistent with those using more elaborate methods. The complex Fourier

transform characterizes spatial distributional properties beyond the power spectrum in a manner

different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy.

We identify some threads of modern large scale inference methodology that will presumably yield

detections in new wider and deeper surveys.

Keywords: cosmology: large-scale structure of universe, galaxies: clusters: general

1. INTRODUCTION: PERSPECTIVE AND ASSUMPTIONS

This paper takes the background established by two previous publications on the multiscale structure of the Universe

(Way et al. 2011, 2015, Papers I and II, respectively) in a different direction: direct 3D Fourier analysis of the galaxy

positions. The goal is to maximize three things: simplicity, extraction of information from the data, and independence

from assumptions and models. The following list describes the principles underlying this work. These items are largely

methodological clarifications and not cosmological assumptions as such. In many cases our approach differs from
previous work, references to which are deferred to the next section.

1. A Limited Cosmological Sample. Testing models against finite-volume data usually involves consideration

of cosmic variance. To avoid the need to postulate properties of unobserved data that is inherent in this notion,

we here adopt a viewpoint nicely described (but not necessarily endorsed) by Peebles (1975a):

“One can adopt the view that we have only one Universe, that we can see only part of it, and that the

analysis ought to be based on that part alone.”

See Section 5.2 for an approach to cosmic variance using resampling techniques.

2. Nearly Noise-free Data. For our purposes the uncertainty due to observational errors in the SDSS data is

essentially negligible (Section 5). We thus do not follow the common practice of treating irregularities at small

scales as noise (or as not “topologically persistent”) with smoothing or other practices that destroy information.

Structure detected on all scales carries significant information about the Universe.

3. Point Distribution, not a Continuous Field. Galaxies are often assumed to trace some underlying con-

tinuous field – e.g. an averaged luminous or dark matter density, or a probability density for the presence of
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a galaxy. We address the spatial distribution of galaxies without reference to any continuous field, and treat

galaxies as discrete entities whose spatial distribution carries information about the structure of the Universe.

This approach is consistent with equal treatment of all galaxies – i.e. massive galaxies are not given more weight

than light ones.

4. Summary Distributions. There are two qualitatively different approaches:

• detailed representation and interpretation of local structures

• estimation of a few summary, global distributional parameters

again nicely spelled out in Peebles (1975a). In Papers I and II we opted for the former. Here we derive several

Fourier analysis functionals with the goal of estimating important global parameters.

5. Gaussianity. We approach the search for signs of non-Gaussianity via the Fourier phase spectrum. A complete

characterization of Gaussianity is contained in the power spectrum. The information about non-Gaussianity

contained in the phase spectrum is organized in a form that is relatively easy to interpret (cf. Section 4.2).

6. Absolute Clustering. Most previous analysis has treated spatial correlations as departures from the mean

density (e.g. Yu & Peebles 1969; Landy and Szalay 1993). In contrast density estimates here and in Papers I

and II are absolute. In fact as discussed in Section 3.2 subtraction of a reference value, such as the mean, does

not make sense for a direct Fourier transform as in Eq. (4). In addition our approach avoids some technical

problems (Jones, Martinez, Saar and Trimble 2004).1

7. Explicit Deconvolution of the 3D Selection Function. Using standard Fourier transform methods we

avoid constructs such as Monte Carlo simulations of “un-clustered” points within the selected volume. For

example, Feldman, Kaiser and Peacock (1994) state: “Our approach is to take the Fourier transform of the real

galaxies minus the transform of a synthetic catalog with the same angular and radial selection function as the

real galaxies but otherwise without structure.” Perhaps this approach has meaning in the context of a model

based on underlying randomness, but is not a prescription for deconvolving the selection function. Further, in

consonance with item 1 and 2, we avoid interpreting such variance as a measure of uncertainty. While various

deconvolution methods have been employed for both CMB and galaxy data, we believe the direct 3D Fourier

deconvolution described in Section 3.5 is novel.

8. Use All the Data. In order to maximize the information gleaned from the analysis, where possible we use all

of the data. For example we do not discard galaxies near the edges of the data space in order to simplify the

shape of the window function (Section 3.3), but the next item indicates one case where we feel a cut on the data

is justified.

9. Volume-Limited Samples. Throughout, as in Papers I and II, we use well defined volume-limited samples.

This minor violation of the previous item is made for the good reason that it avoids bias corrections necessary

for a magnitude-limited sample.

10. Omitted Effects. Due to the small radial depth of our relatively shallow volume limited sample (redshift

≤ 0.12) and our interest in the simplest analysis, we have neglected many processes known to affect the data,

including evolution and nonlinear cosmological terms, peculiar velocities, gravitational lensing, and local and

non local GR terms depending on Bardeen potentials and their temporal derivatives (Raccanelli et al. 2015,

especially Fig. 1).

The few of these viewpoints that are nonstandard are not meant as criticisms of other approaches. The goal here is

limited to investigating the simplest possible way to extract spatial frequency information, largely avoiding model-

specific assumptions and concentrating more on the phase spectrum and less on the power spectrum.

The organization of the rest of this paper is as follows: Following a brief survey of prior work in Section 2, Section 3

provides explicit details of two different ways to compute Fourier transforms – a direct unbinned approach and a fast

1 A related comment applies to the standard way to estimate correlation functions (Peebles 1975a). A formula for the probability that a
galaxy be found within volume element dV at distance r from a randomly chosen galaxy, δP = n[ 1 + ξ(r) ]dV , with n the mean density,
is conventionally used to define the autocorrelation function ξ(r) as a measure of clustering. This definition yields a quantity explicitly in

excess (or deficit) of the mean. Its normalization,
∫
ξ(r))dV = − 1

n
, is negative due to the hold-one-out procedure, and is very small due

to the referencing to the mean. This can be awkward for fitting positive only models of ξ(r) (e.g. power laws) to cosmological data.
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Fourier transform of galaxy coordinates in 3D spatial bins – and a simple procedure for deconvolution of the sampling

window from the estimated galaxy transform. Section 4 gives examples of application of the complex 3D Fourier

transform, briefly dwelling on the amplitude (power) spectrum but focusing on the phase spectrum as a measure of

Gaussianity. Section 5 briefly addresses uncertainties. The epilog in Section 6 provides a summary and pointers to

three statistical techniques the should be useful in future research. Two appendices provide a check of the analysis

and some MatLab code.

2. PREVIOUS WORK

A small part of the earlier relevant literature can be found in Limber (1953); Gunn (1965); Yu & Peebles (1969);

Peebles (1975a); Peebles and Hauser (1974a,b). The cosmological importance of power spectrum analysis has recently

been extensively discussed in Carron, Wolk and Szapudi (2015), especially in the context of galaxy redshift surveys

(e.g. Vogeley and Szalay 1996, Sec. 1.1). Fourier phases have been studied in connection with cosmic microwave

background data (see e.g. Chiang et al. 2003; Naselsky, Doroshkevich and Verkhodanov 2003, 2004; Chiang, Naselsky

and Coles 2004; Naselsky, Chiang, Olesen and Novikov 2005; Chiang and Naselsky 2007; Kovács, Szapudi and Frei

2013; Ferreira and Magueijo 1997). More recently phase analysis is beginning to be applied to galaxy redshift data

(Hikage et al. 2005; Matsubara 2007; Wolstenhulme, Bonvin and Obreschkow 2015; Eggemeier et al. 2015).

Some relevant work on non-Gaussianity, much in the context of CMB but with application to large scale – or

more appropriately multi-scale – structure includes: Hikage et al. (2006) who provide a general overview, Sefusatti and

Komatsu (2007) who discuss the bi-spectrum for high redshift galaxies, Hikage et al. (2008) who discuss the application

of Minkowski functionals, Sánchez and Cole (2008) who estimate the power spectrum using Fourier methods based on

work by Feldman, Kaiser and Peacock (1994), Mart́ınez-González (2009) and Lentati, Hobson and Alexander (2014)

for pulsar timing studies, and also Kovács, Szapudi and Frei (2013). See Coles et al. (2005) for application of Fourier

methods to the 2dF galaxy redshift survey, employing the Fourier based method of Percival, Verde and Peacock (2004),

a generalization of the minimum variance method of Feldman, Kaiser and Peacock (1994). Coles et al. (2005) derive

power spectra and compare them to several empirical (e.g. Tegmark et al. 2004a) and theoretical results. See Kitaura

(2012) for derivation of some statistics relevant to non-Gaussianity in galaxy clustering. Other work on non-Gaussianity

can be found in (Coles and Chiang 2000; Rocha et al 2001; Watts, Coles and Melott 2003; Tegmark et al. 2004b).

Efstathiou and Moody (2001) describe a method of recovering the three-dimensional power spectrum from measure-

ments of the angular correlation function applied to the APM galaxy survey – one of the first large surveys using

automatic plate measuring methods. See also Querre, Starck and Mart́ınez (2002) for discussion of the galaxy distri-

bution using multiscale methods in general, and 3D implementations of the á trous algorithm, and the ridgelet and

beamlet transforms in particular. Percival, Verde & Peacock (2004, hereafter PVP) studied luminosity-dependent

galaxy clustering with spherically averaged Fourier analysis. Coles et al. (2005) applied the Fourier based method of

PVP to the 2dF galaxy redshift survey. This approach in turn is a generalization of the minimum variance method

of Feldman, Kaiser and Peacock (1994). See recent papers (Slepian and Eisenstein 2015a,b,c; Doré et al. 2015) for

estimation of three-point correlation functions and their application to problems in dark matter cosmology. Alam,

Ata, Bailey et al. (2016) give a recent summary of relevant literature and extensive analysis of data from the SDSS-III

Baryon Oscillation Spectroscopic Survey.
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3. 3D FOURIER TRANSFORMS

The sub-sections below describe the procedures used to compute the complex Fourier transform of the galaxy

distribution – first reviewing the data and then outlining direct and binned transforms of the galaxy positions and

the corresponding data window, concluding with a Fourier-based procedure to deconvolve the effect of this window

function.

3.1. The Data

Below we Fourier analyze the SDSS DR7 data described in Papers I and II, namely the NASA/Ames Research

Center SDSS Value Added Galaxy Catalog (AMES-VAGC). Data Release 7 of the SDSS was augmented using the

New York University Value Added Catalog (see Appendix A of Paper II for details and references). As a reminder,

redshift ζ, right ascension α and declination δ were converted to rectangular Cartesian coordinates with the formulas

x = ζcos(δ)cos(α)

y = ζcos(δ)sin(α) (1)

z = ζsin(δ)

and no cosmological corrections were made in view of the low-redshift nature of the sample. The one small difference

is that, since the analysis here does not involve Voronoi tessellation, the omission of the small sample of galaxies near

the edges of the data space (Paper I, Section 5.2.2) is unnecessary. This slightly increases the sample size. More

significant is the resulting improved definition of the edges of the data space, of importance for the transform of the

data window described in Section 3.3.

3.2. Fourier Transform of the Galaxy Distribution

Let’s start with the Fourier transform of the data, keeping an eye toward preserving both directional and phase

information. The Fourier transform of any function f(x) defined over a 3D volume V in x = (x, y, z)-space is, without

specifying a normalization,

Ff (k) =

∫
V

f(x)e−ik·xdx (2)

where k is the spatial frequency vector k = (kx,ky,kz) – chosen so that the linear scale (one full period of the sinusoid)

corresponding to k is 2π/k.

Following Yu & Peebles (1969); Peebles (1975a); Peebles and Hauser (1974a,b) we account for the discreteness of

the data by taking f(x) in Equation (2) as the sum of point locator functions, i.e. delta functions at the positions xn

of each of the galaxies:

f(x) =

N∑
n=1

δ(x− xn) , (3)

where the sum is over the N galaxies included in the volume limited sample. (See also Bardeen et al. (1986) for a

similar representation in terms of peaks – local 3D maxima – of density.) The resulting galaxy Fourier transform is

simply

F (k) =

∫
V

N∑
n=1

δ(x− xn)e−ik·xdx =

N∑
n=1

e−ik·xn , (4)

where the dot is the vector scalar product. In component notation

F (kx, ky, kz) =

N∑
n=1

e−i(kxxn+kyyn+kzzn) . (5)

To examine the behavior of the transform for small frequencies, after defining the galaxy centroid as

< x >≡ 1

N

N∑
n=1

xn , (6)

a simple computation gives

F (k)
k→0

∼ N [1− ik · < x > +
1

2
< (k · xn)2 > + . . . ] (7)
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Thus the normalization is F (0) = N , and one sees that the transform is smooth at k = 0. With this form of the Fourier

transform there is no analog of subtracting the mean value to bring the power spectrum to zero at zero frequency. The

nearest thing to this procedure is to remove the linear term in Eqs. (7) by referring the coordinates to the centroid;

but the higher order terms are still smooth at the origin.

The formula in Equation (5) is easily evaluated for any galaxy sample, in time of order N × N3
k , i.e. the product

of the number of galaxies and the total number of frequencies (Nk is the number of frequencies in a single coordinate

direction). It treats all galaxies as identical points. Through its response to crowding together of galaxies in various

regions it is sensitive to the local number density of galaxies, but by choice not to mass density. Figure 1 displays the

3D structure of the Fourier power spectrum P (k) = P (kx, ky, kz) = |F (kx, ky, kz)|2. Since the definition in equation (4)

does not include a factor 1/V , powers throughout are dimensionless and normalized to P (0, 0, 0) = N2. Conversion to

physical units (per unit volume) is easily made from the value 9.47× 107Mpc3 for the volume of the convex hull of the

data sample. The higher frequencies roughly speaking form an isotropic but somewhat irregular shell around the inner

core (the black shape at the center of the plot) of low-frequency or large-scale structure. Spectral quantities derived

using equation (5) will be called direct, as opposed to binned for those from the methods in Section 3.4. Appendix A

describes the use of the inverse Fourier transform to check how well Eq. (5) represents the raw data.
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Figure 1. Isosurface plot of the Fourier power spectrum. The x,y and z coordinates are proportional to the base-10 log of spatial
frequency, but labeled with the value of k in units of h/Mpc. The powers, in order of decreasing opacity of the iso-surface and
expressed as fractions of the zero-frequency power N2 are 0.8357, 0.7612, 0.7450 and 0.7288. These levels were chosen to make
this display informative.
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3.3. Fourier Transform of the Data Window

The data from a survey of a given volume V can be thought of as the product of the actual 3D spatial distribution

of galaxies multiplied by a 3D spatial window, or selection function, given by:

S(x) = 1 for x ∈ V (8)

0 otherwise .

This window can be defined by the 2D footprint of the survey on the sky combined with the 1D redshift selection

function. Here we use the corresponding volume in terms of rectangular coordinates x,y, z. This approach ignores the

variation of the redshift selection over the relatively narrow redshift range of our data. Of course any survey has this

and additional selections, not considered here.

By the well known convolution theorem (Bracewell 1999) the Fourier transformation of this product relation yields

the fact that the Fourier transform of the survey data, Eq. (4), is the transform of the actual distribution convolved

with the Fourier window function, defined as the transform of the selection function:

Fwindow(k) =

∫ ∞
−∞

S(x)e−ik·xdx =

∫
V

e−ik·xdx . (9)

In order to compute this integral exactly one could discard some of the data and redefine V as a simplified subset of

the actual data space, such as a figure with planar boundaries. Here we wish to compute Fwindow(k) where V is the

actual 3D data space of the redshift survey. Note that the linearity of equation (2) means that the Fourier transform

can be evaluated as a sum of transforms over the elements of any partition of V ; i.e. for any f

Ff (k) =
∑
n

∫
Vn

f(x)e−ik·xdx , (10)

where {Vn, n = 1, 2, . . . } is a set of disjoint volumes the union of which is the full observation space V . It is convenient

here to partition V into a set of rectangular parallelepipeds, or cuboids. The contribution of a cuboid C, i.e. the volume

defined by

S(x) = 1 xa ≤ x ≤ xb; ya ≤ y ≤ yb; za ≤ z ≤ zb (11)

= 0 otherwise ,

can be found exactly as a function of its bounding xyz coordinates xa, xb etc. The Fourier transform of such a cuboid

is just

FC(k) =

∫
C

e−ik·xdx (12)

=

∫ xb

xa

e−ikxxdx

∫ yb

ya

e−ikyydy

∫ zb

za

e−ikzzdz (13)

= (
e−ikxxb − e−ikxxa

−ikx
)(
e−ikyyb − e−ikyya

−iky
)(
e−ikzzb − e−ikzza

−ikz
) (14)

Now let’s approximate the data space with a refined partition as follows: Construct a grid of equal squares covering

the projection of V onto the x-y plane, with a fine spacing ∆ = xb − xa = yb − ya. To define a cuboid it remains to

specify za and zb. We take these as the z-coordinates at which a vertical line through the center of the square and

parallel to the z-axis intersects the convex hull of the full set of galaxy positions. It is easy to see that each such line

intersects the convex hull in either 2 or 0 facets; in the latter case the cuboid is entirely outside the data set and is

ignored.

Figure 2 shows relatively crude partitions of the actual data space with the long axes of the cuboids in two different

directions. If the transverse dimensions of the cuboids are sufficiently small the partition approaches an exact coverage

of the overall convex hull and the resulting window Fourier transform is independent of the cuboid orientation. For

the grid size equal to .0001 redshift units (0.416 Mpc) the sum of the volumes of the cuboids matches the exact volume

of the convex hull to one part in 108, not surprising since this computation is equivalent to the elementary integral

calculus procedure for computing the volume of the convex hull. Putting all this together, the result will be used to

correct the galaxy Fourier transform for the effects of the data window – cf. Section 3.5. Appendix A describes a way

to check how well the transform approximates the actual selection function, and Appendix B describes some MatLab

code – provided in electronic form – for computing the transform of the selection function.
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Figure 2. Two sample partitions of the convex hull of the SDSS data into cuboids with transverse size .01 redshift units. The
long-axes of the cuboids are parallel to the z-axis and y-axis. These crude partitions are for illustration only; those used in the
analysis are much finer.

3.4. Fast Fourier Transform of the Binned Galaxy Distribution

Another way to estimate the Fourier transform is to construct a 3D histogram of the galaxy positions in a spatial

grid of 3D bins, or voxels. To use the fast Fourier transform each voxel must be a cube with the same small size

∆x = ∆y = ∆z. This procedure discards some information, due to rounding of galaxy coordinates and placing some

close pairs in the same voxel. Table 1 summarizes statistics for three grid sizes. Columns 5-8, giving the maximum

number of galaxies in any one voxel and the fractions with 0, 1, and 2 or more galaxies, are useful in assessing the

information loss in this binning. Ideally the fraction with more than one galaxy would be zero, leaving coordinate

truncation as the only error. Computation with 512 bins in each coordinate – case (c), with 135,005,697 voxels – seems

to be the largest feasible with current personal computers. As the accuracy of the computation increases more and

more voxels are empty, since the number not empty cannot exceed the number of galaxies. The last column gives the
fraction of voxels empty because they are outside the survey volume; these values are large due to the shape of the

survey and because we zero-padded it for good frequency resolution.
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Table 1. Statistics for the Binned Fourier Transform

Case Nbins
a Nvox

b ∆ c Max n d Fraction n=0 e Fraction n=1 f Fraction n > 1g Fraction Outsideh

(a) 128 2.1 M 6.8 32 0.9693 .016519 .014221 0.8923

(b) 256 16.8 M 3.4 11 0.9938 .004882 .001300 0.9347

(c) 512 134.2 M 1.7 5 0.9991 .000869 .000062 0.9347

aNumber of bins per dimension.

bNumber of voxels (millions).

cLinear dimension of voxels (Mpc).

dMaximum number of galaxies in a voxel.

eFraction of empty voxels.

fFraction of voxels containing one galaxy.

gFraction of voxels containing more than one galaxy.

hFraction of voxels outside the convex hull of the data.
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The Fourier transform of the window is simply that of this bin array with unity inside the sample volume and zero

outside, cf. equation (9). Actually instead of the convex hull of the filled bins, for each dimension we assigned a unit

value to each bin between the minimum and the maximum indices of bins containing galaxies in all of the corresponding

x-columns, y-columns and z-columns. In practice this is essentially the same as the convex hull. The inverse transform

of the Fourier transform computed this way is guaranteed to exactly reproduce the input counts-in-voxels, so there is

no point in numerically demonstrating the accuracy of this representation as in Appendix A for the direct transform.

3.5. Deconvolution of the Data Window

We approach correcting for the selection function (or window) in a straightforward way. Functions of a 3D coordinate

vector x related multiplicatively in the manner

qobs(x) = qtrue(x)qwindow(x) , (15)

have spatial Fourier transforms related by

Qobs(k) = Qtrue(k) ∗Qwindow(k) , (16)

where Qobs(k) is the Fourier transform of qobs(x), etc., and ∗ means 3D convolution on the vector k. There are many

deconvolution techniques for finding qtrue(k), thus correcting for the window function, but here the simple expedient

of Fourier transforming Eq. (16) yields

qtrue(k) = F−1
F[Qobs(k)]

F[Qwindow(k)]
(17)

where F and F−1 are the forward and inverse Fourier transforms. In all numerical results presented here the MatLab

( c©MathWorks) multidimensional functions fftn and ifftn were used for both the direct and binned cases. This

deconvolution method is sometimes avoided because of worries about noise amplification and/or issues when the

denominator in eq. (17) is zero (or small in absolute value), but here these issues do not cause any serious problems.

4. CHARACTERIZING THE SPATIAL DISTRIBUTION OF GALAXIES

We are now ready to use the above Fourier transform methods for global characterization of the galaxy distribution.

It is useful to compare results from the binned and unbinned Fourier transforms. Neither one is better in all aspects

than the other. Of course they both have limited spatial frequency resolution, but their different data representations

implement distinct approximations. The binned approach suffers from the information loss associated with quantization

of the galaxy coordinates.

4.1. Fourier Power Spectrum

Figure 3 shows the deconvolved power spectra for both methods: direct as in Sections 3.2 and 3.3 and binned in

Section 3.4. The powers projected in three orthogonal directions, |F (kx, 0, 0)|2, |F (0, ky, 0)|2, and |F (0, 0, kz)|2, are

distinguished by lines of different widths. These three power spectra share the same zero-frequency value, namely

|F (0, 0, 0)|2 = N2, and we have normalized the plotted curves to unity at zero spatial frequency – which of course is

off-scale on these log-log plots. Comparison of the power spectra in different directions provides a simple measure of

isotropy. The spectra at lower spatial frequencies approximate the power-law dependence characteristic of red noise

(Aschwanden 2011). The straight (dashed) lines in this figure are least-squares fits to the mean of the three power

spectrum curves in the interval below the cutoff at log k = −1.2 mentioned in the caption; the log-log slopes indicated

there are not far from the common red noise value of ≈ −2. The scatter reflecting high variability at small scales

motivates the vertical shifts in the higher frequency part of these plots, at the same cutoff used for the power-law fits.

Figure 4 plots our power spectra against those from some other authors. In interpreting the figure and assessing

this comparison the reader should bear in mind both the simplicity of our method – using the unadorned Fourier basis

and avoiding the variety of known weighting schemes, corrections, and assumptions – and the differences in the data

used. This figure compares the average of our three x, y and z projected spectra in Figure 3 with results from detailed

analysis of very similar data by Tegmark et al. (2004b) and of a much larger sample by Percival, Nichol, Eisenstein et

al. (2007).

Using a flux limited sample, instead of our more easily interpreted volume limited sample, the first authors address

the selection function, redshift space distortions, bias effects and other systematic errors, using a Pseudo-Karhunen-

Loeve expansion (Tegmark et al. 1998). Figure 4 includes the data from the first two columns of their Table 2 in

the form of open circles, without showing their rather large horizontal and vertical error bars. They refer to this as
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Figure 3. Power Spectra from deconvolved direct (left) and binned (right) Fourier Transforms: x, y and z powers in solid lines
of increasing width. As in Fig. 1 the dimensionless power is shown divided by its zero-frequency value N2 to yield P(0) = 1.
Above log k of -1.2 (spatial frequencies > 0.063) the powers are multiplied by 3000, 10, and 0.1, respectively, for clarity. The
dashed straight lines are power law fits to the low frequency data (averaged over the 3 directions) with slopes -2.8 and -2.3
respectively.

the real-space galaxy-galaxy power spectrum Pgg in units of (h−1Mpc)3, and “recommend using column 2 for basic

analysis.” Like ours this estimate treats the galaxies as equal points and accordingly is not corrected for bias, justified

because bias appears to be largely luminosity and scale independent (their Figures 28 and 29, renormalizing to the

linear ΛCDM model). It is noteworthy that their power spectra with and without correction for the Fingers of God

(FOG) – their columns 2 and 3, respectively – would be indistinguishable had we plotted both. Even though the effect

of FOGs seems insignificant here, redshift space distortions should be addressed in any serious scientific applications.

Analysis of a much larger redshift survey, extending to much larger redshifts than our study, by Alam, Ata, Bailey

et al. (2016), includes significant redshift-space distortion corrections. The results of a similarly detailed analysis by

Percival, Nichol, Eisenstein et al. (2007) of a sample including both SDSS main galaxies and luminous red galaxies

(LRGs) out to much larger redshifts (z ∼ 0.5) than our sample, are plotted as plus-signs.

First compare the curves for the direct and binned transforms (solid and dot-dash lines). While the values at some

frequencies, especially the lower ones, differ by nearly an order of magnitude, the rough similarity of the slopes and

values at higher frequencies demonstrates that these two methods are crudely consistent with each other. As well, the

similarity of some of the finer detail in the two representations support the notion that the effective spatial resolution

is relatively good (probably better than that corresponding to Tegmark et al.’s horizontal error bars, not shown here).

The differences between our spectra and the others, especially in the form of a vertical offset above about k ≈ .05, are

not surprising in view of the differences in the data and methods used.

Nominally the plotted points in our power spectra are independent of each other. Essentially no significant mea-

surement errors propagate into this plot at any spatial frequency. The only large discrepancy in the plot is between

Percival et al.’s and our powers at the longest scales, understandable in terms of the difference of the data samples and

systematic effects at large scales. In the power spectra in Tegmark et al. (2004b) and ours, not surprisingly there is no

evidence for baryon acoustic oscillation features. These important features do begin to appear at around k = 0.7Mpc−1

with the larger sample and the inclusion of the SDSS luminous red galaxies in (Percival, Nichol, Eisenstein et al. 2007).

A further avenue of investigation would invoke surrogate redshift surveys, such as galaxy catalogs derived from

N -body simulations. The idea would be to compare simulated against actual distributions of variously grouped power

or phase spectrum quantities. Using ensembles of synthetic catalogs to enable variance analysis is probably a fruitful
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Figure 4. Power Spectrum Comparison. Solid line: power from average direct Fourier transform (eq. 5). Dots-dashes: average
binned FFT. Dashes: average of the direct powers at all of the frequencies falling in a given 1D spherical volume in k space.
Our power spectra are renormalized to units of (h−1Mpc)3 for comparison with the other authors, and corrected
for the selection window (cf. Section 3.5). The spatial frequencies and powers from columns 1 and 2 of Table 2 in Tegmark
et al. (2004b) are plotted as plus signs (+), and those of Percival, Nichol, Eisenstein et al. (2007) as small dots (but with the
lowest 6 frequencies emphasized by circumscribed circles).

path to reliable scientific conclusions. While such a study is beyond the scope of this paper, we have carried out a

simple comparison against a single catalog, the Millennium Simulation (MS) of Springel et al. (2005). This N -body

simulation (with N = 21603 = 1.0078 × 1010) contains data used to study multi-scale structure in Papers I and II.

The xyz positions of simulated galaxies were treated in the same way as the SDSS data – yielding a volume limited

sample, and without discarding galaxies lying close to the edges of the data space. This MS analysis is described in

Section 5.
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4.2. Gaussianity

In modern cosmology it is often posited that the initial conditions of the Universe consisted of a random density

distribution described as a Gaussian random field. It is not completely clear how the character of such an initial

distribution may have evolved gravitationally, or how matter-to-galaxy biasing, integrated Sachs-Wolfe (ISW) effects,

and gravitational lensing may complicate conclusions based directly on the galaxy distribution (Coles 2000). Hence

the interpretation of detected non-Gaussianity (NG) in the distribution of low redshift galaxies would not be straight-

forward. We find no NG signatures here, but if significant detections were to be made, e.g. in future large redshift

surveys, the resulting parameters would be useful as additional constraints on precise cosmological evolution models.

Hence we now describe some aspects of direct analysis of the Fourier phase spectrum.

Although Gaussian processes are well understood mathematically, the elusive nature of non-Gaussian (NG) processes

has complicated and discouraged exploration of searches for their signatures. The infinite number of ways a process

can depart from Gaussianity leads to a plethora of potential NG metrics, only a handful of which have been pursued.

Here we describe a relatively straightforward class of NG tests based on metrics of Gaussianity applied to the complex

Fourier data cube. The idea centers around metrics of how identically and independently (IID) the Fourier phases at

different spatial frequencies are distributed.

Much previous work centers on parametric tests, valid only in the context of hypothetical physical or mathematical

models and thus far short of general characterization of NG. Analyses using higher-order spectra and correlation

functions, or function bases such as Karhunen-Loeve expansions (Vogeley and Szalay 1996; Tegmark et al. 2004b) or

harmonic oscillator eigenfunction expansions (Rocha et al 2001) are closer to the spirit of non-parametric analysis with

its greater generality and flexibility. On the other hand these methods are simply ad hoc ways to project an infinite

dimensional function space into lower dimensions for modeling convenience. By contrast the approaches of Rocha et

al (2001) and Contaldi et al. (2000) employ Bayesian frameworks that alleviate some of this ad hoc character. But

the conclusions are still dependent on the correctness of a hypothetical model (e.g. the quantum mechanical harmonic

oscillator in Rocha et al (2001)). More recently Kovács, Carron and Szapudi (2013) define generalized phases and

apply this concept to characterize the coherence between WMAP and Planck CMB maps.

In the CMB context various authors have made suggestions for the two aspects of this problem, namely identification

of: (a) phase subsets that are computationally practical but do not discard too much information, and (b) non-

Gaussianity metrics for these sets (Chiang et al. 2003; Chiang, Naselsky and Coles 2004; Naselsky, Chiang, Olesen

and Novikov 2005; Chiang and Naselsky 2007). For one example Chiang, Naselsky and Coles (2004) discuss a number

of general problems and propose an innovative procedure using return maps. This can be thought of as a way to

quantitatively characterize joint distributions (cf. Scargle 1990, e.g.). In another example Chiang and Naselsky (2007)

propose ring-like sets in spatial frequency space. And more recently several authors have proposed phase analysis based

on 3-point correlation functions of the Fourier transform of a whitened version of the density field (Wolstenhulme,

Bonvin and Obreschkow 2015; Eggemeier et al. 2015).

4.2.1. The Fourier Phase Spectrum

We utilize the Fourier transform as a convenient setting for quantitative characterization of the Gaussianity of

the spatial distribution of galaxies. Keep in mind that the histograms constructed in pursuing this goal are simply

distributions from the one data sample on hand – not probability distributions with respect to some stochastic ensemble.

Several considerations motivate our focus on phases:

(1) The phase spectrum captures much of the information on non-Gaussianity present in the data.

(2) Phases of Gaussian data are identically and independently distributed (IID; see e.g. Naselsky, Chiang, Olesen and

Novikov 2005). Measures of dependency in the phase distribution are consequently measures of non-Gaussianity.

(3) The oft used bi-spectrum and higher order spectra and correlation functions have many problems.

(4) In most practical, largely non-astronomical, situations the Fourier phase information in 2D images is much more

important than the amplitude information (Oppenheim and Lim 1981; Coles 2000; Chiang and Coles 2000a).

See also (Mannell 1990) for a related discussion of phase in speech intelligibility.

In addition see comments in Section 6 regarding related statistical methods to be pursued in future work.
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Point number 3 deserves more explanation. Several authors (e.g. Ferreira and Magueijo 1997; Carron 2011; Carron

and Neyrinck 2012; Carron and Szapudi 2015) have disclosed a variety of fundamental problems with the multi-point

correlation function hierarchy, including large computational complexity that grows rapidly with order, information

mixing among the orders, and the fact that even including all orders only incomplete information is captured for

a log-normal density field (Carron and Neyrinck 2012) and only a tiny dramatically decaying fraction of the total

information content of large fluctuations (Carron 2011). A direct Fourier transform avoids to a large degree all of

these problems: computational complexity is relatively small (N× the number of spatial frequencies), the amplitudes

at different spatial frequencies are independent of each other, convergence is well understood, and the invertibility

of the Fourier transform (Appendix A) assures that the combination of the power and phase spectra capture all of

the information in the data. Most important, simple data cubes cleanly display phase as an explicit function of k.

Furthermore there are no special problems like those with generating representative sets of triangles and avoiding

oddly shaped ones, as for 3-point estimators.

Coles (2000) gives a clear discussion of the background for these points, to which we add only a few remarks. Of

course the basic notion is that the Fourier Transform appraises structure as a function of scale. The discrete estimate

is a finite sampling of a potentially infinite number of degrees of freedom. But the Nyquist-Shannon sampling theorem

guarantees that it captures all the information contained in the data, limited only by the data resolution. Since the

inverse Fourier transform exactly recovers the raw data, it is clear that the (frequency dependent) amplitudes and

phases contain complementary information, together yielding a complete description of the data. The Fourier power

spectrum completely characterizes the Gaussian properties of the data; while non-Gaussianity information can appear

in both amplitude and phase spectra, in many situations the latter dominates.

Driven by these comments our basic approach is to study phase distributions for non-uniformity. Perhaps the simplest

possible approach is to examine the overall distribution of phases without regard to spatial frequency. Any structure in

this distribution would suggest the presence of underlying non-Gaussianity. Figure 5 shows simple histograms of all 16

Direct 

Direct (corrected) 

FFT 

−3 −2 −1 0 1 2 3

FFT (corrected) 

Phase (radians) 

Figure 5. Distributions of phases for the four cases (Direct as in eq. (4), and simple FFT of binned data as in Section 3.4, both
with and without correction for the window function, as labeled). Horizontal axis is phase in radians. The vertical axis is the
129-bin histogram population of phases from the 128× 128× 128 3D phase cube, with a horizontal dotted line at the expected
rate of 1283/2π = 333, 772.1 counts per radian, the ranges of these plots are 12, 000 is the same units. Poisson count error bars
for a typical bin are shown in the upper left corner of each plot.

million-plus phases for the four cases, with 256+1 spatial frequencies in all 3 dimensions. If these plots were scaled to

include the zero of the ordinate the fluctuations would be invisible. There is here no evidence for any departure from
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uniformity, but these overall distributions are almost certainly insensitive to NG because they do not take account of

frequency relationships, which are discussed in the next section.

It is perhaps notable that even the distributions for phases uncorrected for the data window (the first and third

panels) do not reveal perceptible nonuniformity. This somewhat surprising result probably reflects that the data

window truncates the Fourier components but does not change their phases.

4.2.2. Distributions of Phases Grouped by Spatial Frequency

A more refined approach is to aggregate phases into two or more sets and test whether the distributions in them are

identical, as they should be in the Gaussian case. The model-independent and non-parametric way the phase spectrum

neatly lays out the relevant information in a 3D data cube facilitates such segmented analysis. Accordingly we use the

following procedure to study NG:

(a): Compute the complex 3D Fourier transform A(k)eiφ(k).

(b): From (a) compute the 3D data cube φ(kx, ky, kz).

(c): Specify a collection of subsets of (b) to be tested.

(d): Evaluate differences of nearest-mode phases within each member of the collection (c).

(e): Select an IID metric and compute it for each of the differenced arrays in (d).

(f): Assess the statistical significance of the results of the collection of tests (e).

The first two steps are straightforward from the discussion in Section (3). Step (c) addresses the need to identify sets

of frequencies related to each other in some germane way. For example phases at nearby frequencies would presumably

show dependencies when those at well-separated frequencies might not. From among the many possible ways to take

advantage of the organized way frequencies are arranged in a 3D phase-data cube, we adopt the following: Let Nk be

the size of the Fourier transform in each of its 3 dimensions. For each of the N2
k pairs (ky, kz), for the array consisting

of the corresponding Nk phase values as a function of kx – we call this array an x-beam – compute a metric or test

statistic Tx, and similarly for y-beams and z-beams.

Step (d) implements suggestions in (Chiang and Coles 2000a; Coles and Chiang 2000, 2001; Coles 2000; Watts, Coles

and Melott 2003) emphasizing the potential effectiveness of studying the differences between phases at adjacent spatial

frequency modes, as opposed to the phases themselves. Consider one dimensional first differences of the form

Dk = φk+1 − φk (18)

where k is a spatial frequency index, here taken in one of the three cardinal directions – x, y or z. The following

analysis was done with un-differenced, first-differenced, and higher-order-differenced beams, the latter proving useful

in unrelated sequential analysis problems (unpublished). But un-differenced or higher-order differences gave less clean

results than first differences, so here we report only these results.

As noted by Watts, Coles and Melott (2003) if the phases are IID on the circle then so are their differences. This

requires that the phase differences that lie outside (−π, π) first be adjusted for “wrap around” as follows:

Dm
k → +2π −Dm

k for Dm
k > +π (19)

→ −2π −Dm
k for Dm

k < −π

This procedure is different from standard phase unwrapping based on changing absolute jumps greater than π to their

2π complement (e.g. for the MatLab function unwrap; c© the MathWorks Inc).

Step (e) amounts to the generation of a collection of estimates of a NG metric of a beam in the form

Fx(ky, kz) = Txφ(kx, ky, kz) ky = 1, 2, . . . , Nk; kz = 1, 2, . . . Nk , (20)

where the subscript just indicates which variable T operates on. At this point a huge range of possible definitions

of T opens up. There is no unique or universally best metric, and undoubtedly different metrics are suitable for

different forms of NG. Item (2) in Section 4.2.1 motivates the use of a test statistic for the null hypothesis of IID

phases. The formal definition of independence (joint distribution equals product of individual distributions) is difficult

to turn in to a practical IID test (e.g. Scargle 1981; Coles 2000; Hyvärinen, Karhunen and Oja 2001, and Section 6

below). Variance is a simple and easily interpretable statistic that might be sensitive to some types of NG. The Planck

Collaboration studied both skewness and kurtosis (Ade et al. 2014) – measures of asymmetry of a distribution and
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of the relative importance of the center versus tails. Jin et al. (2005), based on detailed study of various methods of

CMB non-Gaussianity detection, concluded that analysis of the kurtosis of wavelet coefficients is best. Based on an

idea in Polygiannakis and Moussas (1995), Chiang and Coles (2000a) propose use of phase entropy for NG studies.

Hyvärinen, Karhunen and Oja (2001) claim the optimality of entropy as an NG metric, but in practice use kurtosis as

an approximation because of pitfalls in entropy estimation. Skewness did not seem to add any NG detective efficiency

compared to kurtosis, so here we report studies of variance, kurtosis, and entropy. In every case these metrics were

applied to first differences between phases at adjacent frequencies.
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4.2.3. NG Metric Maps: Control Samples

Consider now the analysis of synthetic NG-free data for a sequence of three increasingly realistic sampling schemes,

followed by analysis of the actual data. Maps of the beam metrics defined in Eq. (20) are presented as images with

greyscales of the metric defined along one dimension, as a function of the two perpendicular dimensions in the phase

data cube. Within each of the following figures the three panels present the analysis of the same data for beams in the

x, y and z directions. When the data fall within the irregularly shaped volume we have used different spatial frequency

arrays in the three directions. That is, the frequencies are integer multiples of a fundamental frequency defined by

k0(n) =
2π

L(n)
(21)

where L(n) is the range of the data in coordinate direction n. This choice gives slightly better deconvolutions. In

contrast, for convenience the power spectra presented above in Section 3 refer to the same frequency array in all

directions, namely corresponding to the largest of Lx, Ly, and Lz.

Figure 6 contains maps generated from a single 3D random phase cube. Such images are used throughout this section

to visually search for possible non-random patterns in the behavior of NG metrics computed along beams parallel to

the coordinate axes. The rows of panels are for the three metrics – variance, kurtosis and phase entropy – applied to

the first differences of the phases adjusted as in Eq. (20). The columns are for the statistics computed along the x, y

and z directions. These unsmoothed2 plots retain the discrete nature of the data to allow better appreciation of the

randomness of the distributions. The data cube generating this figure consists of phases generated directly from an

IID random number generator, not from a Fourier transform, and thus represents the simplest and most extreme form

of the null hypothesis of IID phases. As expected there is no apparent structure in any of these panels.

2 Specifically we used the MatLab flat mode for shading plots, not the interpolation mode interp.
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Figure 6. Maps of NG metrics for random phases. All images are from the same 3D 128× 128× 128 cube of data consisting of
IID random numbers uniformly distributed on (0, 2π). Columns from left to right: beams in the x, y and z directions. Rows
(top to bottom): variance, kurtosis and phase entropy. Coordinates are indices in the synthetic random arrays, not functions of
spatial frequency as such, so axis labels are suppressed. Here and in subsequent figures the grayscale bars to the right of each
panel depict the range of the metric.



Galaxy Distribution 3D Fourier Transform 19

Figure 7 shows the same type of map as in Figure 6 but here the phases are derived from the direct Fourier transform

in Eq. (5) of random points distributed uniformly within a xyz cube. This configuration is chosen to diagnose possible

modification of the phase distribution inherent in the transform procedure, but with a window that is benign due

to the simplicity of its boundaries. Deconvolution of the data window is not relevant, due to the simplicity of the

boundaries of the data space. As expected there is no apparent structure in any of metrics presented in these panels.
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Figure 7. NG statistics maps for phases of the direct Fourier transform of a set of 100, 000 xyz points randomly and uniformly
distributed within a cubic 3D volume, using equation (5). The identities of the panels are as in Figure 6. While the coordinates
are now spatial frequencies, the units are fixed by the arbitrary size of the cube, and therefore are also arbitrary. The 128
frequencies shown here cover the range −f0 to f0, where f0 = 2π/L is the fundamental frequency and L is the cube size; zero
frequency is the point at the very center of the plot, as in all the subsequent figures.
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Figure (8) presents phase analysis for xyz-data that are still synthetic random points but now distributed uniformly

within the convex hull of the actual data. The idea is to diagnose possible structure in these maps induced by the

irregular boundaries of the data space. The lack of structure here indicates that such distortion is minimal.
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Figure 8. Variance (first two rows), kurtosis (middle pair of rows) and phase entropy (last two rows) maps for phases from
the Fourier transform of 139,798 xyz points (the same as the number of galaxies in our SDSS data set) randomly distributed
within the convex hull of the actual data. The members of each of these pairs are without and with data window deconvolution,
respectively. Columns are the 3 projections as in previous figures.
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4.2.4. NG Metric Maps: The Galaxy Data

Now turn to the actual galaxy data. Figure 9 presents the same analysis as carried out for the last of the control

cases in the previous section. The maps in the first, third and fifth rows, depicting the statistics for the phase cube

not corrected for the data window, show clear evidence of structure – most evident for the y-beam in the middle row.
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Figure 9. NG maps from the Fourier transform of the actual 139,798 galaxy positions, displayed as in Fig. 8. Note that the
kurtosis structure is lighter than average, as opposed to the darker than average features in the other two cases. The centers of
the linear scales of 128 frequencies are 0; the adjacent points are ±0.002Mpc−1; the ends of the scale are ±0.128Mpc−1.
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The null results with the control samples in the previous section suggest that this structure is not due to the

irregularity of the data window alone – no non-random structure is evident in Figure 8 – but rather to the combination

of both the multi-scaled clustering in the point distribution and the irregular shape of the data window. In any case,

the structure in all three beams (rows 2, 4, and 6) largely disappears when the data window has been deconvolved in

the spatial frequency domain.

The subtle residual structure is possibly real, but more likely reflects imperfect deconvolution and is therefore not

of astrophysical interest. This conclusion is reinforced by the similarity of the morphologies of the uncorrected and

residual structure. Figure 9 is simply illustrative of an approach to a difficult scientific problem – perhaps useful in

future studies with larger data sets – and is of course not a definitive comparison of the three statistics nor meant to

imply that kurtosis or variance are superior metrics. Indeed Hyvärinen, Karhunen and Oja (2001) present evidence

that entropy may be an optimal Gaussianity detector (cf. Section 6).

4.2.5. Phase non-Gaussianity due to Density Perturbations

Under gravitational evolution from even a perfectly Gaussian initial state the low-redshift galaxy distribution is likely

to have developed some degree of departure from Gaussianity. Hence more realistic tests of NG detection methodologies

would involve simulated density perturbations. This section explores the connection between the distribution of phase

differences and nonlinear clustering (cf. Watts, Coles and Melott 2003).

We generated synthetic data consisting of points randomly distributed in cylinders superimposed on a uniform

background within a unit cube. These structures are not meant to be realistic models, for example of cosmic strings

or other topological defects; they are constructed as pseudo-acoustic, transversely confined waves to introduce some

degree of disturbance to the Fourier phases. Each cylinder contains points drawn randomly from normal distributions

with variance 0.005 in the transverse directions (x and y), and proportional to 1.1 + sin(kz) longitudinally. Fig. 10

depicts these cylinders: one is parallel to the z-axis; a second is slightly tipped (≈ 1◦) and the third even more so

(≈ 6◦)).
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Figure 10. Density perturbations inserted into a unit 3D data cube. Coordinates of the end points of the three cylinders:
#1: (0.5,0.5,0.0) - (0.5,0.50,1.0); #2: (0.5,0.7,0.0) - (0.5,0.72,1.0); #3: (0.8,0.7,0.0) - (0.9,0.72,1.0). Transversely within each
cylinder the points have a normal distribution of standard deviation 0.005. The longitudinal density modulations correspond
to sinusoids 1.1 + sin(kz) with k = 50, 64 and 45 – i.e. approximate periods of 0.12, 0.10 and 0.14 units. For visual clarity only
1, 000 points per beam are shown; many more were used in the simulations as indicated in the figure captions below.
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Realizations of this configuration were superimposed on a dense random background of uniformly distributed points,

the former representing a perturbation of the latter. The columns of Fig. (11) display distributions of phase differences

D(kx|ky, kz) = φk+1,ky,kz − φk,ky,kz
D(ky|kx, kz) = φkx,k+1,kz − φkx,k,kz (22)

D(kz|kx, ky) = φkx,ky,k+1 − φkx,ky,k

in the three indicated directions. From top to bottom the vertical sequences exhibit the evolution of the distribution

D X-beam phase 
-2 0 2

D Y-beam phase 
-2 0 2

D Z-beam phase 
-2 0 2

Figure 11. Normalized distributions of nearest mode phase differences for random points in a 3D data cube with various numbers
of points drawn from the cylindrical configuration of Figure 10. The twelve thin lines represent the distribution for the following
numbers of points in each cylinder: 10, 32, 100, 317, 1000, 3163, 10000, 31623, 100000, 316228, 1000000, 3162278, against a uniform
background of 10, 000, 000 uniformly distributed points. The thicker curves are for background only (top) and no background
(bottom, 3162278 points per cylinder). The curves are shifted vertically for clarity; mean and zero levels are indicated by
horizontal dotted lines and circles at the curve endpoints, respectively. Compare with Fig. 1 of Watts, Coles and Melott (2003).

with increasing NG signal strength. As expected, for weak signals the distributions are flat, but as as the NG signal

strength grows the distributions are more and more distorted. At the seventh case (out of 12), with 10, 000 points in

each of 3 cylinders, the distortion starts to become clearly significant.
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Plotted in the same way as Figures 6-9, the maps in Figure (12) for the pure density signal (only points in the

cylinders, no background), indicate that all three of these statistics reveal distinct spatial frequency structure. The

maximum frequency in the Fourier transform gives a minimum scale somewhat larger than the approximate width of

the cylinders; therefore the plots do not resolve these structures but reflect the larger scales associated with distances

between the cylinders, etc.
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Figure 12. Phase statistics maps for the toy three-cylinder density data described in Figure 10, displayed as in Figures 6-9.
The axis scales comprise 65 frequencies, with 0 at the center; the spatial periods corresponding to the maximum |k| are 0.0312
in units where the cube edges are of length 1.
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Figure (13) is for the case from the sequence in Fig. (11) where the weakest NG signal is just barely detectable in

the difference distribution: 10, 000 points in each of the three cylinders, with a background of 10, 000, 000 uniformly

distributed points. The three cylinders together thus contain the fraction 0.003 of the background. The volumes of

the cylinders are approximately π(2 × .005)2 – smaller than the cube’s volume by a factor of 3 × 103 – so the point

density in the cylinders is about 3 times the mean density of the background.
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Figure 13. Phase statistics maps for the toy three-cylinder density data described in Figure 10, displayed as in Figures 12. This
figure illustrates what a barely detectable NG signature of the toy signal in Fig. 10 might look like, but of course is not a guide
to realistic expectations.

This section developed a visual approach to assessing distributions of statistical parameters in a 3D data cube, and

applied it to try to detect departures from the hypothesis of IID Fourier phases. In such displays the eye is famously

good at perceiving patterns, but also easily fooled by noise fluctuations. Given the display issues of pixelization,

contrast, range, color, non-linear scaling, etc., and the difficulty of rigorous analysis of statistical significance of

perceived patterns in this kind of image, a more objective approach is called for, as addressed in the Epilog, Section 6.
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5. UNCERTAINTY

An estimate of the uncertainty of a scientific result is an important part of its value. At issue is how widely the

result might vary on account of the inevitable accidental aspects of the measurement process. This can be addressed

by appraising data values that could have been obtained but, by happenstance, were not. Cosmology often sidesteps

its one-universe handicap by measuring uncertainty as the variance over a postulated distribution function of such

hypothetical data. In this section we discuss uncertainty in our results using several ideas of what constitutes such

“other data,” in turn considering observational, internal and external errors.

5.1. Observational Errors

One often has relatively good information about observational errors. E.g. normal distributions with well-determined

parameters can often be theoretically justified and empirically tested and calibrated. Assessment of the corresponding

uncertainty is then relatively straightforward. The only sources of observational error relevant to our analysis are fiber

collision effects and random measurement errors in coordinates and redshifts. Paper II discussed our procedure for

mitigating the former, and we now demonstrate that the latter are negligible.

We simulated 100 realizations of normally distributed heteroscedastic errors (zero mean and standard deviation as

given for each galaxy in the data catalog) added to the actual right ascension, declination and redshift values. Power

spectra for these data sets were carried out exactly as for the actual data. The relative errors were computed as

the standard deviations of the resulting powers divided by the corresponding means. Figure 14 plots these results

as functions of spatial frequency. These relative errors are maximum at the highest spatial frequencies, reaching at

most 1%. Overall the effect of these errors is at least several orders of magnitude too small to have any relevance.

At the same time this analysis has ignored systematic errors and the likely possibility of correlated errors induced

by systematics. In principle a similar display of phase uncertainty is possible, but difficult to display and relatively

uninformative, so we do not present it.
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line with circles: power in the x, y, and z directions, respectively.
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5.2. Internal Variance

An additional element of uncertainty arises because, not only could the measured galaxy coordinates be different (as

discussed in the previous subsection) but the sample could have actually contained different galaxies. The view is that

the galaxy samples are randomly drawn from a hypothetical spatial distribution. The relevant uncertainty is termed

internal variance – that is, internal to the data space at hand. One can think of this process as 3D spatial shot noise.

This term typically refers to random fluctuations in a measured light curve of a varying astronomical source, but here

the discreteness refers to galaxies instead of photons.

One could compute variances in ensembles of random draws from a model of this distribution. Shortcomings of any

such model-based approach include loss of information by imperfect representation of the data, imposition of incorrect

information (e.g. by effective smoothing), and dependence on the correctness of the model form and its parameter

values. Furthermore this procedure provides no evidence on what the distribution actually is. Hence we do not choose

to follow this approach.

Happily, random resampling techniques such as bootstrap and jackknife methods (Efron and Tibshirani 1993) en-

able straightforward model-independent estimation of internal variance.3 Like most purportedly powerful and easily

implemented algorithms, these methods are sometimes misunderstood and used carelessly. Two common reactions

are that they are “useless; they seem to get something for nothing” or “great; they capture all relevant statistical

information from all kinds of data.” The truth is in between but closer to the latter. The following discussion shows

what resampling can do here and what it can’t.

The referenced resampling methods use the empirical distribution function (EDF) to approximate the true distribu-

tion described above. This function, derived directly from the data, captures all information contained therein about

the true distribution. Galaxy-by-galaxy resampling with replacement or leave-one-out cleanly implement the bootstrap

or jackknife principle, respectively. Resampling has the advantages that it relies on only the data measured, needs no

additional data, and makes no assumptions other than that the empirical distribution is a good approximation of the

actual one.

The jackknife method uses a set of samples, each consisting of the full data set with with one point at random

removed. The bootstrap method seeks the approximation mentioned above with random draws from the EDF, defined

to be the set of 3D coordinates {x1,x2, . . . ,xN} each assigned the probability 1
N , much as in Equation 3. The result

is simply a sample, typically N in size, randomly drawn with replacement from the original data points. That is,

the randomly drawn galaxies are not discarded and may occur two or more times in the bootstrap sample. In both

cases one simply analyzes many realizations of these surrogate data samples in the same way as the actual data. The

correctness of the results relies on the single assumption that the empirical distribution function fairly represents the

underlying physical process. The bootstrap bias or jackknife bias are estimates of any bias inherent to the algorithm.

They compare the resampled mean against the original mean. However they can say nothing about possible bias in

the original data themselves.

For the current power spectrum analysis the leave-one-out procedure of the jackknife is almost trivial to implement;

the m-th jackknife sample, i.e. with the m-th point left out, is from Eq. (4):

Fjackknife(k,m) =

N∑
n6=m

e−ik·xn = F(k)− e−ik·xm (23)

Thus Fourier transforms of the jackknife samples can be computed without the need to evaluate the full n-sum each

time. Bootstrap samples are only slightly more complicated. These computational efficiencies allow the luxury of

using N resamples – the maximum possible for jackknife and certainly overkill for bootstrap.4

One more computational detail deserves mention: The replacement aspect of bootstrap resampling yields the poten-

tial of algorithm problems with exact data point duplicates. E.g. the local event rate measure 1/(tn+1 − tn) in time

series applications (cf. Scargle et al. 2013) is infinite for duplicate event times. Here there are no such singularities, as

the corresponding terms in the Fourier sum simply add without difficulty. Any concern is further alleviated since our

bootstrap results are essentially identical to those using the jackknife, which does not generate duplicates.

Reporting variance for a 3D spatial distribution is notoriously difficult; instead we choose to report it for power

spectra. Figure (15) displays bootstrap means, variances and biases for our standard SDSS galaxy sample. It is clear

3 See also (Norberg et al. 2009) for a related discussion of internal vs. external errors and comparison of various randomization methods
in the context of clustering statistics.

4 Section 6.4 of (Efron and Tibshirani 1993) addresses the question of how many resamples are needed to assure good convergence.
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that the bootstrap components of internal variance and bias are quite small, especially at low spatial frequencies. The

bottom panels are similar plots for bootstrap analysis of the comparable Millennium Simulation sample detailed in

Papers I and II. Crudely speaking the results are similar, although the synthetic data yield somewhat less noisy power

– with smaller variance and bias.
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Figure 15. Bootstrap mean, variance and bias of power spectra. Left: x, y and z projections of bootstrap mean power (in order
of decreasing darkness and as labeled) are plotted as narrow lines embedded in greyscale bands depicting the ±1σ bootstrap
standard deviation. Right: fractional bootstrap bias. Top panels: 139,798 bootstrap samples of the galaxy data. Bottom panels:
similarly for the Millennium Simulation data. Jackknife results are indistinguishable from these.

5.3. External Scatter: Cosmic Variance

Survey data from different regions of the Universe give different parameter estimates. Such cosmic variance5 refers

to errors in cosmological parameter estimates for scales larger than covered by a given survey. This uncertainty is

in addition to those discussed in the above sub-sections. To estimate the effect of cosmic variance on our results we

Fourier analyzed ensembles of sub-sets of two data sets.

The first, drawn from the SDSS DR136 (SDSS Collaboration et al. 2016), is significantly larger than the original

DR7 selection of Paper I. It was obtained with a very similar query from the SDSS skyserver casjobs web interface7,

except that the absolute magnitudes were obtained directly in the casjobs query, whereas in Paper I we had to obtain

5 The term is sometimes used in other ways, but here is restricted to variance of parameter estimates over an ensemble of sub-volumes.

6 http://www.sdss.org/dr13

7 https://skyserver.sdss.org/CasJobs
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this information via a cross match to the SDSS NYU VAGC catalog8 (Blanton et al. 2005). To further increase the

size of the sample, while mostly remaining within the precepts of the data selection of Paper I, we adopted a somewhat

larger redshift range (0.005 ≤ z ≤ 0.15), and defined the volume limited sample with a slightly fainter cut in absolute

R magnitudes, at -19.8495 instead of -20.1 as in Paper I. In addition we discarded galaxies with anomalously large

R magnitude errors, adopting a threshold of 0.2786. As in Paper I we selected only the contiguous north galactic

cap region and applied the same procedure to address the fiber collision bias. The resulting data set consists of

N = 370, 847 galaxies in a (convex hull) volume of 100.7× 107mpc3.

The second data set is the same one used in the current paper and defined in Paper I, roughly 2.6 times fewer

galaxies in a volume 10 times smaller: N = 139, 798 and (convex hull) volume of 9.4676 × 107mpc3. In both cases

these main data sets were subdivided into 8 independent subsets: octants, with divisions at the median values of the

xyz coordinates. Summary statistics for these subsets appear in Table 16.

The top panel of Figure 16 shows linear plots of the power spectra, averaged over the 8 octants (as well as the three

coordinate projections). The error bars are the standard deviations, which serve as estimates of cosmic variance in the

spatial power spectra. The DR13 sample has somewhat smaller scatter, as expected on account of its larger size. The

relative size of these uncertainties (standard deviation divided by mean) is plotted as a function of spatial frequency

in the bottom panel. The cosmic variance of the power values at a given frequency are rather large, but one expects

the more cosmologically relevant normalizations and logarithmic slopes of the spectra to be less uncertain, because

they essentially average over this scatter as a function of frequency.

8 http://sdss.physics.nyu.edu/vagc
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Figure 16. Cosmic Variance. Top: Linear plots of mean power spectra (averaged over 24 values: 8 octants × projections in
the three coordinate directions) and corresponding standard deviations. Bottom: the above standard deviations divided by the
means, as a function of spatial frequency. In both panels thin and thick lines are for DR13 and DR7, respectively.
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That this is the case can be seen in the information on these parameters in Table 2. The 8 numbered columns refer

to the octants, i.e. the independent sub-samples of the survey data described above. For the two data samples three

quantities are tabulated for each octant: the normalization9 and logarithmic slopes from least-squares fits (linear in

log-log space) to the spatial power spectra, and the number of galaxies in the octant. The next two columns give the

corresponding means and standard deviations – first averaging the x−, y− and z− projections and then over the 8

octants.

We are interested in the uncertainties for the results derived in this paper for the full DR7 sample. Accordingly,

the standard deviation values for the octants in the penultimate column are adjusted downward by the factor
√

8− 1

to account for the relative sizes of the full and sub- samples,10 and reported in the last column (under the heading

“This Paper”). The difference between the values for DR13 and DR7 data indicates the approximate uncertainty of

these determinations and their extrapolation. The fact that the percentage variance in normalization is smaller than

in slope may be related to the comment in footnote 9.

It is useful to compare these results with the quantification of cosmic variance by Driver and Robotham (2010).

These authors studied the variance of galaxy density across independent subsets of much the same SDSS as used here.

They derived approximate formulas for the corresponding standard deviation as a function the volume and aspect ratio

of the 3D survey region, and the number of independent sight lines. Their Equation (1) gives the values reported in

the second part of the last column, for density cosmic variance for our full DR7 sample. The close agreement between

our 6.5% (power spectrum slope) and their 7.0% (galaxy density) for the average of the DR13 and DR7 extrapolations

is probably partly due to the similarity of the data used in the two works and partly fortuitous.

Table 2. Cosmic Variance: Power Spectra of Octants

Octant 1 2 3 4 5 6 7 8 Mean σ Full DR7 Estimate

SDSS DR13 This Paper Driver

Normalization 1.170 0.912 1.071 0.988 1.012 1.020 0.911 0.988 1.009 0.084 3.0%

Slope -2.282 -1.817 -2.126 -1.910 -2.030 -2.022 -1.823 -1.953 -1.995 0.157 5.6% 8.1%

N (370,847) 47181 40143 50153 47946 49092 49005 38995 48329 46356 4290

SDSS DR7

Normalization 1.019 1.057 0.965 1.004 0.946 1.030 0.956 1.051 1.004 0.0432 1.5%

Slope -1.937 -2.208 -1.692 -1.942 -1.629 -2.027 -1.714 -2.100 -1.906 0.209 7.4% 6.0%

N (139,798) 20408 11973 21697 15821 15903 21615 11891 20490 17475 4129

6. EPILOG: SUMMARY AND SUGGESTED FUTURE ANALYSIS

The unadorned 3D Fourier transform of coordinates from a redshift survey can be used to characterize the spatial

distribution of galaxies, as demonstrated here with the volume limited sample defined in Papers I and II. A simple

Fourier sum over the galaxy positions compares well with the transform of the same points binned in small 3D voxels.

The direct sum has no resolution limit other than that inherent to the data or due to computational limitations.

We display 3D Fourier power spectra, as well as projections radially and in three orthogonal coordinate directions;

projection in arbitrary directions could provide a straightforward way to study isotropy.

However the emphasis here is on Fourier phase information, of interest for example in the context of Gaussianity

measures. The phase spectrum has much to recommend it over the more commonly used multi-point statistics and

related methods. We display maps (projected to 2D) of variance, kurtosis and entropy of nearest-mode phase differences

to quantify distributional nonuniformity. Such analysis of the SDSS data, taking into consideration simulated control

samples and the MS simulation, has not provided any convincing evidence for non-uniformity in the distribution of

phases. This result is somewhat surprising since structure on any scale must generate local Fourier non-uniformities

and render the distribution of density values (in spatial voxels) non-normal (e.g. Schaap 2007). Furthermore even

9 As noted in Section 3.2 the value of the spatial power at zero frequency simply reflects the size of the sample. Hence we chose to
tabulate here values derived from the intercept of the linear fits, scaled to their mean. These values are therefore not independent of the
other two tabulated data.

10 A straightforward Monte Carlo study validated this procedure, in spite of the fact that both the power spectra and their derived
parameters are non-linear functionals of the data.
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perfectly Gaussian initial density perturbations should suffer evolutionary modifications leading to nonGaussianity

in the current distribution. On the other hand, offsetting these effects are data-analytic issues such as the rather

conservative measures (e.g. phase differencing) we have been driven to, the ill-defined nature of the target signal, and

the plethora of possibly relevant analysis methods – only a tiny fraction of which has been explored here or in previous

research by others. In addition the normalization principle underlying the central limit theorem is at work in samples

of any size.

However we expect that improved data – more recent SDSS data releases, deeper selections of other existing surveys,

new larger ones, compendia of several redshift surveys covering similar redshift ranges, etc. – and guidance from theory

and simulations will elucidate these issues, perhaps using phase analysis techniques augmented with the following three

promising new approaches:

6.1. Optimal Phase Bins via Bayesian Blocks

The first problem is finding a principle for defining sets of phases to analyze. In an exploratory data analysis setting

– i.e. absent guidance from theoretical predictions – one should, in principle at least, consider the set of all possible

subsets. A way to address the exponentially large size of such a collection is to use the Bayesian Block algorithm

(Jackson et al. 2005; Scargle et al. 2013) in its higher dimensional mode (Jackson et al. 2010) to optimally partition

the phases. This O(N2) algorithm yields the optimal among the 2N possible binnings, where here the block cost

function to be optimized would be some NG metric for the data within each block, for example kurtosis. This leads

to ...

6.2. Independent Component Analysis

... the second problem: the choice of NG metric. The close connection between independence and nonGaussianity (cf.

Section 4.2.1) suggests that independent component analysis (ICA) will be useful. The wide-ranging but comprehensive

monograph by Hyvärinen, Karhunen and Oja (2001) elucidates all of the NG issues discussed here and then some. By

elaborating its slogan “nonGaussian is Independent” this monograph provides a unified picture of many inter-related

properties of statistical processes – including dependence, correlation, Gaussianity, non-linear correlation, kurtosis,

cumulants, and sparseness. This book and the update (Hyvärinen 2016) detail related algorithmic approaches such

as sparse coding, projection pursuit, principal component and independent component analysis. The existence of

practical, fast ICA algorithms11 should facilitate application of these ideas to statistical cosmology. We are thus led

to ...

6.3. Large-Scale Inference: Higher Criticism and False Discovery Rate Control

... address the last step, inference.12 Recent advances in statistics have opened up a number of opportunities for

future analysis of cosmological data. What Brad Efron calls “scientific mass production, in which new technologies ...

allow a single team of scientists to produce [very large ] data sets ... ” has given birth to the field Large-Scale Inference

(LSI). Two monographs (Efron 2011; Efron and Hastie 2016) review the statistical science underlying this discipline, its

historical development, and its role in big data contexts. Two LSI techniques extremely popular in applied statistics,

False Discovery Rate Control (FDRC) and Higher Criticism (HC), address problems potentially of great importance

for large-scale astronomical data analysis. In the generic setting, termed large-scale hypothesis testing, one is faced

with a large number of data elements, each providing evidence for or against a hypothesis (or possibly a different

hypothesis for each datum). The analysis techniques, much like the trials factor, focus on integrative issues such as

assessing the probability of making even one false rejection of a hypotheses in simultaneous analysis of N hypothesis

tests – especially in cases where the signal is expected to be weak (individual ones may not be detectable on their

own) or rare (occurring in � N of the cases).

Higher Criticism, perhaps more informatively termed second-level significance testing, was introduced by Donoho

and Jin (2004), following John Tukey’s parable of the young psychologist, further developed in (e.g. Donoho and Jin

2004, 2008, 2015; Walther 2011) and applied in cosmology (e.g. Cayón, Jin and Treaster 2005; Jin et al. 2005). The HC

statistic may provide rigorous significance analysis of the multiple tests which are implicit in phase maps – effectively

providing a statistical trials factor correction. HC applied to numerous beams within the phase-cube could lead to HC

analysis of the HC statistic itself – third-level significance testing or even higher criticism. With somewhat different

11 See https://research.ics.aalto.fi/ica/fastica/

12 “Very roughly speaking, algorithms are what statisticians do, while inference says why they do them.” (Efron and Hastie 2016)
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goals the FDR formalism, by controlling the relative proportion of false discoveries, can lead to more discoveries –

useful especially when follow-up of putative discoveries is practical.

We are grateful to the NASA-Ames Director’s Discretionary Fund and to Joe Bredekamp and the NASA Applied

Information Systems Research Program for support and encouragement. Thanks goes to Ani Thakar and Maria

Nieto-Santisteban for their help with our many SDSS casjobs queries. Michael Blanton’s help with using his SDSS

NYU–VAGC catalog is also very much appreciated. We are also grateful to Chris Henze, Roger Blandford, Elliott

Bloom, Andrew MacFadyen, Jay Norris, Pratyush Pranav, Aaron Roodman, Alex Silbergleit, Luis Teodoro, Bob

Wagoner, Emannuel Candes, Peter Coles, and Guenther Walther for various helpful suggestions. We especially thank

the anonymous referee for comments that much improved this paper.

Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the

National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy,

the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participat-

ing Institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation

Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy, the

Max-Planck-Institute for Astrophysics, New Mexico State University, University of Pittsburgh, Princeton University,

the United States Naval Observatory, and the University of Washington.

This research has made use of NASA’s Astrophysics Data System Bibliographic Services.



Galaxy Distribution 3D Fourier Transform 35

REFERENCES

AAde, P. et al. 2014, Astronomy and Astrophysics, 571, A23

Alam, S., Ata, M., Bailey, S. et al. 2016, The clustering of

galaxies in the completed SDSS-III Baryon Oscillation

Spectroscopic Survey: cosmological analysis of the DR12

galaxy sample, arXiv: 1607.03155

Aschwanden, M. 2011, Self-Organized Criticality in Astrophysics:

The Statistics of Nonlinear Processes in the Universe,

Springer: Heidelberg.

Bardeen, J., Bond, J., Kaiser, N., and Szalay, A. 1096, ApJ, 304,

15.

Blanton, M.R. et al. 2005, AJ, 129, 2562

Bracewell, R. 1999, The Fourier Transform and Its Applications,

2nd Revised Edition, McGraw-Hill, Inc., New York

Cayón, L., Jin, J. and Treaster, A 2005, MNRAS362, 826

Carron, J. 2011, ApJ738, 86

Carron, J. and Neyrinck, M. 2012, ApJ750, 28

Carron, J. and Szapudi, I. 2015, What does the N-point function

hierarchy of the cosmological matter density field really

measure ?, arXiv:1508.04838

Carron, J., Wolk, M. and Szapudi, I. 2015, MNRAS453, 450

Chiang, L., Naselsky, P., Verkhodanov, O. and Way, M. 2003

ApJ, 590, L65

Chiang, L. and Naselsky, P. 2007, MNRAS, 380, L71

Chiang, L. and Coles, P. 2000, MNRAS, 311, 809

Chiang, L., Naselsky, P., and Coles, P., 2004, ApJ, 602, L1

Coles, P. and Chiang, L. 2000, Nature, 406, 376

Coles, P. 2000, Large-Scale Structure, Theory and Statistics, p.

593, in Phase transitions in the early universe: Theory and

observations. Proceedings, NATO ASI, International School of

Astrophysics ’Daniel Chalonge’, 8th Course, de Vega, H. J.,

Khalatnikov, I. M. and Sanchez, N. G. eds., Dordrecht,

Netherlands: Kluwer Academic, arXiv: 0103017

Coles, P. and Chiang, L. 2001, ESO Symposium Mining the Sky,

289, Springer-Verlag, Berlin Heidelberg

Coles, S., Percival, W. et al 2005, MNRAS, 362, 505

Contaldi, C., Ferreira, P., Magueijo, J. and Górski, K. 2000.
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APPENDIX

A. CHECKING THE FORMALISM USING THE INVERSE FOURIER TRANSFORM

It is useful to check how well our Fourier transform estimates capture the information in the galaxy coordinate data.

The discrete Fourier transform of evenly spaced voxels is exactly invertible and therefore lossless, and so is the direct

transform in Eqs. (4) and (5) in the limit of an infinite number of frequencies. Nevertheless it is of some interest to

see how this limit is approached by comparing its inverse transform against the raw data. For this limited purpose

a rough visual check suffices, since a precise goodness-of-fit metric, involving comparison of an effectively continuous

representation with point data, is difficult.

In the direct transform there is no binning of galaxy positions, so if the Fourier transform were to be evaluated at

an infinite number of spatial frequencies the inverse transform would exactly reproduce the data. That is the function

Fx(x) =

∫
F(k)e−ik·xdk (A1)

would vanish except for unit delta functions at each of the galaxy positions. Normalization is not important here, so

the factor 1
(2π)3/2

sometimes written in front of the right-hand side of this equation is omitted. Inserting Eq. (4) into

this expression we have

Fx(x) =

N∑
n=1

∫
e−ik·(x−xn)dk (A2)

It is well known that this integral is equivalent to a δ−function at xn, yielding the desired result.

It is useful to investigate how well these exact results apply to necessarily finite numerical computations. To do so

we evaluate the expression

f(x, y, z) =
∑

kx,ky,kz

F (kx, ky, kz)e
−i(kxx+kyy+kzz) (A3)

appropriately normalized, against the raw data in Figure A1. The total number of spatial frequencies increases as the

third power of the number of frequencies in each dimension, but it is nevertheless feasible to use a frequency grid that

well resolves the relevant spatial structure in all three directions. The spatial frequencies were taken to be the usual

integer multiples of the fundamental frequency of 1
1082Mpc−1. This denominator is approximately twice the maximum

of the x, y and z ranges of the data, to eliminate wraparound.

Since the forward transform can be evaluated at any set of spatial frequencies, it is expedient to use an FFT

algorithm13 to evaluate the expression above. We reconstructed 3D data points at every location in the Nk×Nk×Nk
array (N3

k voxels) where the value of f(x, y, z) in equation (A3) exceeds a threshold. This threshold value was chosen

13 Our expression for the forward transform does not automatically impose the complex conjugate symmetry necessary for the inverse
transform computed in this way to be real. To deal with this problem we simply evaluate the forward transform at an odd number of
points: one corresponding to zero frequency, (N − 1)/2 at positive frequencies, and the remaining (N − 1)/2 at the corresponding negative
frequencies. This symmetry yields a positive result. Accordingly values for the number of frequencies are written in the form N + 1
throughout, where N is even.
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to yield the same number of points (139,798) as in the raw data. The figure shows xy-projections of the points

contained in a 12.5 Mpc thick slice in the z-coordinate, isolating roughly 5,000 points in all three panels. The limited

frequency range dictates that the reproductions are smoothed representations of the galaxy data. The sequence in this

figure demonstrates that increasing the number of spatial frequencies reproduces the discrete raw data with improved

accuracy. Note that panel (c) with Nk = 256 + 1 seems to have more points than (d) for Nk = 512 + 1; in fact

both have the same number, those in (d) more closely following the narrow filaments and other structures (with a

consequent increase in overplotting of points) and therefore more faithfully reproducing the data. The key point is that

information about the discrete structure at a broad range of scales, limited only by the resolution of the computation,

is contained in the Fourier transform in eq. (5).
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Figure A1. Comparison of x-y projections of thin (12.5 Mpc.) z-slices for (a) the galaxy data; and the corresponding recon-
struction with the direct Fourier Transform in Eq. (A3) using (b) 128 frequencies; (c) 256 frequencies, and (d) 512 frequencies.
Coordinates are in redshift units (rsu). The effective resolutions of the reconstructions are 16.9, 8.5 and 4.2 Mpc, respectively.
Plots of other projections are very similar.
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Figure A2. Reconstruction of the selection function. Top row: projections of the raw galaxy coordinates along the x- , y- , and
z-axes respectively (empty white spaces indicate the extended ranges employed in the Fourier transforms) for comparison with
the corresponding reconstructions via the inverse Fourier transform in the bottom row. These are 2D projections of thin slices
oriented as indicated by the axis labels, with the gray-scale representing the reconstructed density. Here the grid size is .001
redshift units, for which the relative volume error in the cuboid representation is about one part in ten thousand.

In the same way the projected density plots in Figure A2 demonstrate that the inverse transform of the selection

function Fourier transform is essentially a uniform solid corresponding to the observational data space. This procedure

accounts for incorporating only galaxies inside the window, but of course does not in any way replace or estimate data

outside of the window.

B. 3D FOURIER TRANSFORMS: MATLAB CODE

The MatLab code, available in electronic only form, computes the Fourier transform of the galaxy coordinates and

the corresponding window function. The latter is based on a refined partition of the actual data space – here taken

to be the convex hull of the galaxy positions – into cuboids with x and y coordinates in an evenly spaced rectangular

grid. The z coordinates of the end faces of the cuboid are taken to be those of the two points where a infinite line,

parallel to the z-axis and passing through the center of the cuboid in the x − y plane, intersects faces of the convex

hull. It is easy to see that each such line must intersect either 0 or 2 such faces, the former making no contribution.

Linearity of the transform then enables evaluation of the transform by simply summing the transforms of the cuboids.


